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Abstract: We have developed a new lumped-parameter dual-porosity approach to simulating unsa-
turated flow processes in fractured rocks. Fluid flow between the fracture network and the matrix
blocks is described by a nonlinear equation that relates the imbibition rate to the local difference in
liquid-phase pressure between the fractures and the matrix blocks. This equation is a generalization of
the Warren-Root equation, but, unlike the Warren-Root equation, is accurate in both the early and late
time regimes. The fracture/matrix interflow equation has been incorporated into a computational
module, compatible with the TOUGH simulator, to serve as a source/sink term for fracture elements.
The new approach achieves accuracy comparable to simulations in which the matrix blocks are discre-

tized, but typically requires an order of magnitude less computational time.

Introduction

In a dual-porosity medium such as a
fractured/porous rock mass, an interconnected
network of fractures provides most of the global
permeability, whereas most of the fluid storage
takes place in the relatively low-permeability
matrix blocks. In principle, one way to model
flow in a fractured/porous rock mass would be
to explicitly account for each fracture and each
matrix block in the computational mesh. In
practice this is rarely possible, due to the large
number of gridblocks that would be needed,
and to the difficulty in gathering the necessary
information concerning the locations, lengths,
and individual transmissivities of the fractures.

Another approach, which is more tractable,
is the MINC method (Pruess and Narasimhan,
1985). In this approach, the fracture network is
treated as a continuum, which is then discre-
tized into fracture gridblocks. The matrix
blocks that are located in the region occupied
by each fracture gridblock are then represented
by a single nested set of shell-like elements.
This usually requires many fewer elements than
would be needed in a discrete-fracture simula-
tion, but still requires about 5-10 times as many
matrix elements as fracture elements.
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One way to eliminate the need for discretiz-
ing the matrix blocks is to treat them in a
lumped-parameter manner, using only mean
values of the pressure, saturation, etc. The
matrix blocks then serve as source/sinks for the
fracture elements. This approach was used by
Barenblatt et al. (1960) and Warren and Root
(1963), who assumed that the strength of the
source/sink was proportional to the difference in
potential between the fractures and matrix
blocks. We have used a nonlinear modification
of their approach, and implemented it into a
computational module that is compatible with
TOUGH. Our approach, which is summarized
below, is also described in more detail by Zim-
merman et al. (1995).

Warren-Root Method

In the traditional lumped-parameter approach
(Barenblatt et al., 1960; Warren and Root,
1963) flow is assumed to take place through the
fracture network, and also between the fractures
and the matrix blocks. Each point in space has
associated with it two sets of parameters, for
the fractures and for the matrix blocks. The
rate of flow between the fractures and matrix
blocks must be expressed as some function of



the local fracture pressure, the local mean
matrix pressure, and other properties such as
the permeabilities, etc. In order to maintain the
linearity of the equations, Barenblatt et al.
(1960) and Warren and Root (1963) assumed
that the volumetric flow rate of fluid from the
fractures into the matrix blocks, per unit volume
of matrix block, was governed by

ok, V,,

q= P -P,), M
where k, is the permeability of the matrix
block, W is the viscosity of the fluid, Pf is the
local pressure in the fractures, Fm is the mean
pressure in the matrix block at a specified point
in the fracture continuum, V,, is the volume of
the matrix block, and o is a geometric factor
that has dimensions of [L72]. The flowrate q
given in eq. (1) therefore has dimensions of
[L3T71. The relationship between the numeri-
cal value of o and the size and shape of the
matrix block is discussed by deSwaan (1990)
and Zimmerman et al. (1993).

The flow of fluid into the matrix block
causes the fluid pressure in the block to
increase. If the fluid is a slightly-compressible
liquid, this pressure increase is described by

dP
q)m Cm Vm—-c-lt—m-

where ¢, is the (dimensionless) porosity of the
matrix block, and c,,, with dimensions of [P_l],
is the combined compressibility of the pore
fluid and the pore space of the matrix blocks.
If egs. (1) and (2) are combined, they yield the
following equation that governs the fluid pres-
sure in the matrix block:

dP, _  ak,
dt Gplicy

For saturated flow of a slightly-compressible
fluid, eq. (3) represents the most-slowly-
decaying Fourier mode in the exact solution for
infiltration into a matrix block (Zimmerman et
al.,, 1993). As such, it correctly models the
long-time,  quasi-equilibrium  regime  of
fracture/matrix interaction. However, as it does
not contain any of the higher modes, it is not
accurate at earlier stages of imbibition
(deSwaan, 1990; Zimmerman et al., 1993).
When incorporated into a dual-porosity model,
the Warren-Root equation leads to qualitatively
incorrect behavior during the transition between

=q, (©))
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fracture-dominated and effective-continuum
flow regimes (Najurieta, 1980).

Dykhuizen (1990) attempted to remedy this
situation by essentially using two different
equations for fracture/matrix flow, one in the
early-time regime, and one in the late-time
regime. Another related approach is that of
Pruess and Wu (1993), who used the integral
method to model flow in the matrix block using
a polynomial pressure profile. This is not a
lumped-parameter approach, but is similar in
that only a small number of parameters are
needed to account for the thermodynamic state
of the matrix block, and the fracture/matrix flow
interactions.

We wuse a variation of Dykhuizen’s
approach, wherein a single equation is found
that seems to accurately represent the flowrate
at both late and early times. This equation,
which is derived from an approximate solution
found by Vermeulen (1953) for diffusion into a
spherical block, is

g = ok, V [(Py=P;)* = (P,,—P;)’] @
3 2P, —P;) ’
where P; is the initial pressure in the matrix
block, and o is the same shape factor that is
used in the Warren-Root equation. When P,, is
close to Py, which is to say that the matrix and
fractures are nearly in equilibrium with each
other, eq. (4) reduces to eq. (1). However, eq.
(4) is also accurate at early times, when the
fracture pressure is varying rapidly and the
matrix pressure has not yet had sufficient time
to respond (see Zimmerman et al., 1993).

Unsaturated Flow Simulation Procedure

We have implemented a Vermeulen-type
expression for fracture/matrix flow as part of a
module of subroutines that is compatible with
TOUGH (Pruess, 1987). The saturated flow
version of this procedure is described by Zim-
merman et al. (1993); here we focus on the
unsaturated flow version.

TOUGH contains provisions for
sources/sinks of mass and heat, which are cal-
culated in the subroutine QU. The

sources/sinks are typically used to account for
fluid that is injected or withdrawn from a
borehole that penetrates one of the gridblocks.
We have modified this subroutine so as to
include a new type of source/sink, which
represents liquid water flowing into (or out of)
the fracture gridblock from the matrix blocks



that are contained in a given fracture gridblock.
The magnitude of the fracture/matrix flux for
each fracture gridblock is computed using

W kk, [0 —W)— (WY, )]

n 2(\llm _\Vi)

where y is the capillary pressure, and k, is the
relative permeability of the matrix block. As the
imbibition rate is primarily controlled by the
hydraulic conductivity of the matrix block at the
wetted boundary, we evaluate k, at the capillary
pressure that exists at the outer boundary of the
matrix block, which is to say at the capillary
pressure of the fracture. Note that the actual
driving force for flow is the difference in liquid
phase pressure; however, as the air phase pres-
sure is assumed to be the same in the matrix
and their adjacent fractures (i.e., the Richards
approximation; see Zimmerman et al., 1995),
the difference in liquid phase pressures is
equivalent to the difference in capillary pres-
sures. The volume V,, represents the total
volume of matrix rock contained within the
fracture gridblock; it is related to the volume of
the fracture gridblock by V,, =(1-¢5)Vf,
where ¢, <1 is the fracture porosity.

The generation term g represents the aver-
age instantaneous flux out of a given fracture
gridblock, over the time interval [¢,¢ +At]. To
make the calculation fully implicit, the flux is
computed using the values of the variables at
time ¢ +Az. The new value of s, that exists in
the matrix block at time ¢ +At must be con-
sistent with the new average saturation. From a
mass balance in the matrix block, the new aver-
age saturation at time ¢ + At is given by

k4 (5)

S,.¢+A) =5, + 22 (¢

O Vin
The mean saturation S, and the mean capillary
pressure ,, are related to each other through

the capillary pressure function of the matrix
rock:

Vo =fS,), (7

where f is the capillary pressure function. At
each TOUGH iteration, egs. (5,6,7) are iterated
(for each fracture gridblock) to find a consistent
set of values of {v,,,S,,,q}. We must also cal-
culate additional contributions to the Jacobian
matrix, whose components are the partial
derivatives of the energy, water and air residu-
als with respect to changes in the primary vari-
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ables, which are the liquid saturation, the gas
phase pressure, and the temperature. In our for-
mulation, we neglect the possible presence of
dissolved air in the water that flows between
the fracture elements and their associated matrix
blocks. However, we do include the latent heat
that is transported with the liquid, which is cal-
culated by multiplying the mass flux given by
eq. (5) by the liquid phase enthalpy.

Example: Flow in a Leaky Fracture

As an example of the use of the new
approach, consider the problem of water
flowing along a single fracture imbedded in a
porous matrix (Travis et al.,, 1984; Martinez,
1987; Nitao and Buscheck, 1991). Flow into
the fracture is driven by the imposed potential
at the inlet boundary, which we take to be zero
in the following example. For the matrix
blocks, we use the hydrological parameters that
have been estimated for the Topopah Spring
Member of the Paintbrush Tuff at Yucca Moun-
tain (Rulon et al.,, 1986). In terms of the van
Genuchten (1980) Earameters, these properties
are k=39x10"%m? ¢=0.14, n=3.04,
0, =1.147x107°Pa", S, =0.984, and
S, =0.318. For the fracture, we use the proper-
ties that were derived by Pruess et al. (1988)
using a mathematical model of a fracture as a
rough-walled channel: k=55x10"1m® (per
fracture), n=2.89, S;=10, S§,=00, and
o, =6.06 % 10#Pa~!. The volumes of the frac-
ture elements were chosen to correspond to an
aperture of 800 um. This relatively large aper-
ture was chosen so as to accentuate the early-
time regime of the solution, in which matrix
imbibition is not yet of much consequence, so
as to clearly verify whether or not the new
method is capable of capturing the transition
between the two regimes.

The fracture was discretized into 45 ele-
ments, with the length of the n—th element
given by L,=(1.2""'m; ie, the element
lengths were 1.0 m, 1.2 m, 1.44 m, etc. Rela-
tively small fracture gridblocks are needed near
the inlet in order to accurately model the
diffusive front, particularly at small times. The
temperature was taken to be 20°C, and the ini-
tial capillary pressure was taken to be
1.013x10° Pa.  This  capillary  pressure
corresponds, through the capillary pressure
functions, to an initial matrix saturation of
0.6765, and an initial fracture saturation of
0.0004.



We have solved this problem using TOUGH
with the new dual-porosity module to perform
the fracture/matrix interaction calculations, and
also using TOUGH without the source/sink
expressions, but with explicit discretization of
the matrix rock adjacent to the fracture. When
solving the problem with explicit discretization
of the fracture and matrix regions, the matrix
elements must be extended sufficiently far into
the the formation so as to effectively simulate a
semi-infinite region. This distance will depend
on the total elapsed time of the simulation. In
the example simulation, which covered an
elapsed time of 10%s (about 3 years), the matrix
elements were extended about 20m away from
the fracture. This was achieved using 20 matrix
gridblocks in the direction transverse to the
fracture, with the thickness of the n—th grid-
block given by L, =(2.0"x10°m. The total
length of matrix gridblocks in the direction nor-
mal to the fracture was therefore equal to
2197 m. Note that very small matrix grid-
blocks are needed near the fracture in order to
accurately resolve the saturation fronts in the
matrix at small times.

The instantaneous flowrate of liquid into the
fracture at the inlet is shown in Fig. 1. At early
times, no appreciable leakage has taken place
into the relatively impermeable matrix, and the
flow field is essentially that of diffusive flow
along the fracture. In this regime the flux into
the fracture at the inlet decays as t~/2. As time
progresses, the wetted interface area between
the fracture and the matrix rock increases, and
the effect of leakage becomes more important.
The overall flowrate into the fracture %radually
changes from a V2 variation to a ¢~ varia-
tion, as was predicted theoretically by Nitao and
Buscheck (1991). The saturation profiles in the
fracture are plotted in Fig. 2, at elapsed times
of 10*s, 10%s, and 108s. At each time, there is
close agreement between the saturation profile
predicted by the new lumped-parameter method,
and that predicted using a discretized matrix.

The amounts of CPU time needed for the
simulations, which were performed on a Sol-
bourne (Series 5) computer, are shown in Table
1. In each case the simulation was carried out
to 108 s, starting with an initial timestep of
0.01s, and with no restrictions placed on the
timestep growth. @ The lumped-parameter
approach required about 70% fewer timesteps
than did the fully-discretized solution, which is
to say it allowed, on the average, timesteps that
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were about 3.38 times larger. The total number
of Newton-Raphson iterations needed by the
fully-discretized simulation was about 3.04
times greater than that needed by the lumped-
parameter method. The savings in CPU time
for the new method was about 96%, which
corresponds to a 25-fold increase in . speed.
This reflects both an increased speed per itera-
tion, and a need for a fewer total number of
iterations to reach the desired total simulation
time of 108s.
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Fig. 1. Instantaneous flux into leaky fracture.
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Fig. 2. Saturation profile in the fracture.



Table 1. CPU times for the problem of horizontal flow along a fracture located in a permeable forma-
tion. Both simulations were conducted with TOUGH running on a Solbourne (Series 5) computer.

Fully-Discretized Lumped-Parameter
# Fracture elements 45 45
# Matrix elements 45%20=900 0
Total # elements*® 946 46
Timesteps 624 185
Iterations 3205 1053
CPU time (s) 20901 823

* Including one boundary element

Conclusions

A new lumped-parameter formulation has
been developed for unsaturated flow in dual-
porosity media. Fluid flow from the fracture
network into the matrix blocks is modeled by a
nonlinear equation, which can be thought of as
a nonlinear extension of the Warren-Root equa-
tion. This expression for fracture/matrix flow
has been incorporated into a module that is
compatible with the TOUGH simulator, to act
as a source/sink term for the fracture elements.
The use of the modified code has been demon-
strated on the problem of flow along a single
horizontal fracture in a permeable rock, under
constant-head boundary conditions. The new
method gives very close agreement with simula-
tions carried out by explicitly discretizing the
matrix blocks, while yielding a substantial sav-
ings in CPU time. The new method also per-
mits a simplification in the process of creating
the mesh and the TOUGH input file. Other
examples, and more details, can be found in
Zimmerman et al. (1995).
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